Monitoring Protein:Protein Interactions in Living Cells Using a Small, Bright and Reversible Complementation System

Brock F. Binkowski, Ph.D.
Promega’s History in Signal Transduction Research

- Luciferase enzymes used extensively in reporter gene assays to monitor gene expression
- Luciferase-coupled assays to measure the concentration of cellular metabolites (e.g., ATP, ADP, NAD, cAMP, etc.)
- More recently, assays to monitor changes in metabolite concentration, cell health or proteolysis in real-time

A deeper understanding of cell physiology and pathology requires identification of protein:protein interaction networks
Monitoring Protein:Protein Interactions (PPIs) in Living Cells

- Two-hybrid based approaches
 - Yeast two hybrid
 - Split ubiquitin
 - MAPPIT
 - KISS

- Protein complementation assays
 - DHFR
 - Beta-galactosidase
 - Beta-lactamase
 - Split fluorescent proteins (BiFC)
 - Split luciferases (BiLC)

Our goal: develop a system to sensitively monitor intracellular PPIs in real time that minimally perturbs protein function

van den Berg et al. Cell Stem Cell 6-369
NanoLuc® Binary Technology (NanoBiT™)

- Developed by Promega’s Advanced Technology Group
- Divide NanoLuc into two subunits
 - Circularly permute NanoLuc at 91 sites
 - Tether native N- and C-termini with a flexible linker containing a TEV protease cleavage site
 - Screen for sites showing the largest RLU difference +/- TEV protease treatment
- Choose site between 156/157
- **Optimize** subunit properties (not just split!)
Mutagenesis of the Large Subunit

Properties of 1-156
- Insoluble in *E. coli*
- Expressed poorly in mammalian cells
- Rapidly degraded vs. full-length NanoLuc®

Two rounds of mutagenesis
- Screened for increased RLUs in *E. coli* lysates with saturating NP (~15k variants)
- Increased RLUs resulting from increased expression or increased specific activity
- 16 beneficial mutations identified & combined to give 11S
- Increased RLUs in both *E. coli* and HEK293T cells
Improved Structural Stability of the Large Subunit

- Increased thermal stability, approaching that of NanoLuc
- Soluble expression in *E. coli*
- Increased expression in mammalian cells
- Increased specific activity when combined with NP

<table>
<thead>
<tr>
<th></th>
<th>WT fragment</th>
<th>11S</th>
<th>NanoLuc</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_M (°C)</td>
<td>45</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>

Expression in *E. coli*

<table>
<thead>
<tr>
<th>1-156</th>
<th>11S</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>S</td>
</tr>
<tr>
<td>T</td>
<td>S</td>
</tr>
</tbody>
</table>

T = total (crude) lysate, S = soluble fraction
Screening a Library of Peptides for an Improved Small Subunit

• Screen peptide library (n = 350) with 11S

Identified peptides over a 5-log affinity range

• PEP86 & PEP114 are the highest and lowest affinity peptides, respectively
• PEP114 chosen for protein interaction assays
• Development underway on applications using higher affinity peptides
NanoBiT™ for Protein:Protein Interactions

Key characteristics
- Subunits are very small; LgBiT is structurally stable
- Very bright signal, ~1/3 as bright as full-length NanoLuc at saturation
- Low affinity interaction of LgBiT:SmBiT ($K_D = 190 \ \mu M$)
- Reversible interaction of LgBiT:SmBiT ($k_{on} = 500 \ M^{-1} \ sec^{-1}$; $k_{off} = 0.2 \ sec^{-1}$)
NanoBiT™ PPI Assay Workflow

Generate clones encoding LgBiT and SmBiT fusions to proteins A & B (up to 8 possible constructs).

Transient transfection of different plasmid combinations into a cell type of interest (up to 8 possible combinations). In general, plasmids are transfected at a 1:1 mass ratio.
Measure RLUs Using a Live Cell, Non-Lytic Assay Protocol

Nano-Glo® Live Cell Reagent: 5X
aqueous stock containing furimazine substrate

Add to living cells

Measure RLUs continuously for up to 2 hours

Furimazine is cell permeable
Orientation Screen Using a Tool Compound

- A tool compound gives an expected response for a known PPI pair
 - Examples: activator of cellular signal transduction pathway or direct PPI inhibitor

- Add tool compound and screen for the orientation giving maximal response
 - Compare to vehicle treatment

- e.g., tool compound as an inducer of the PPI
Benchmarking vs. Split Fluc

<table>
<thead>
<tr>
<th>Fragment</th>
<th>M.W. (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluc 4-398</td>
<td>43.8</td>
</tr>
<tr>
<td>Fluc 394-544</td>
<td>16.6</td>
</tr>
<tr>
<td>LgBiT</td>
<td>17.6</td>
</tr>
<tr>
<td>SmBiT</td>
<td>1.3</td>
</tr>
</tbody>
</table>

- BiTs are much smaller, providing less steric hindrance
- LgBiT provides a structurally stable fusion partner
- Split Fluc fragments likely unstructured

Goal: compare NanoBiT™ to split firefly luciferase (4-398 + 394-544) using the FKBP:FRB model system

- Optimal orientation identified for each system
- Identical 10 a.a. Gly/Ser linkers for both systems
NanoBiT™ is Logs Brighter than Split Fluc

- Identical pharmacology for both systems
- Both systems show reversibility with subsequent addition of FK506 (not shown)
- NanoBiT >100 fold brighter at room temperature
- NanoBiT >1,000 fold brighter at 37 °C
- Consistently lower CVs for NanoBiT
NanoBiT™ Applied to GPCRs

β2-adrenergic receptor (ADRB2)
- Class A receptor with transient β-arrestin interaction
- Rapid recycling to the plasma membrane

Arginine vasopressin receptor 2 (AVPR2)
- Class B receptor with stable β-arrestin interaction
- Slow recycling to the plasma membrane

Goal: use NanoBiT to monitor the association & dissociation of β-arrestin-2 (ARRB2) with C-terminally tagged ADRB2 & AVPR2
- **Constructs:**
 - ADRB2-LgBiT:SmBiT-ARRB2
 - AVPR2-SmBiT:LgBiT-ARRB2

Adapted from Nature Rev Neurosci. 2001; 2:727-733
NanoBiT™ Reflects Expected Biology for GPCR:ARRB2 Interactions

- ADRB2:ARRB2 signal is more transient (class A receptor)
- AVPR2:ARRB2 signal is more stable (class B receptor)
- NanoBiT can be used to monitor transient PPIs in real-time
NanoBiT™ Minimally Influences Protein Interactions

Goal: use the SME-1 β-lactamase (SME1):β-lactamase inhibitory protein (BLIP) interaction to determine the influence of BiT association on equilibrium binding *in vitro*

1) SME1 β-lactamase inhibitory protein (BLIP)
2) SME1 β-lactamase inhibitory protein (BLIP)
3) SME1 β-lactamase inhibitory protein (BLIP)
4) SME1 β-lactamase inhibitory protein (BLIP)

- Measure K_i values for BLIP or BLIP mutants using SME1 substrate (nitrocefin)
 - Compare K_i values between pairs 1-4
 - Compare K_i values to equilibrium association of BiTs for pair 4

Andy Dixon
Minimal Influence Over a Wide Range of Affinity

<table>
<thead>
<tr>
<th>BLIP</th>
<th>K_i (nM)</th>
<th>K_i (nM)</th>
<th>K_i (nM)</th>
<th>K_i (nM)</th>
<th>K_D (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>2.2 ± 0.2</td>
<td>1.9 ± 0.1</td>
<td>3.6 ± 1.1</td>
<td>3.6 ± 0.9</td>
<td>3.2 ± 1.0</td>
</tr>
<tr>
<td>Y50A</td>
<td>80 ± 4.6</td>
<td>77 ± 4.2</td>
<td>120 ± 6.0</td>
<td>100 ± 27</td>
<td>110 ± 10</td>
</tr>
<tr>
<td>R160A</td>
<td>400 ± 71</td>
<td>530 ± 220</td>
<td>570 ± 220</td>
<td>830 ± 270</td>
<td>970 ± 180</td>
</tr>
</tbody>
</table>

- K_i values were similar for pairs 1-4 for BLIP or BLIP mutants (within ~2-fold)
- Minimal influence of BiTs on equilibrium binding over a wide range of affinity
- K_D values determined using NanoBiT™ were equivalent to K_i values for pair 4
NanoBiT™ Reversibility in Cells

Goal: demonstrate reversibility in cells using PKA model system

- NanoBiT fusions: SmBiT-CA:LgBiT-R2A
- Track NanoBiT & changes in intracellular [cAMP] in real-time
 - GloSensor cAMP: firefly luciferase based biosensor for intracellular cAMP
- Transient expression in HEK293, expressing endogenous β2-adrenergic receptor (ADRB2)

PKA Model

GloSensor™ cAMP

Inactive PKA

Agonist

ATP

cAMP

Active PKA

Firefly luciferase

New N- & C-termini

Fuse wt N- & C-termini
NanoBiT™ Shows Expected Correlation with cAMP Dynamics

Sequential addition of the following:
- Isoproterenol (ISO): ADRB2 agonist (cAMP ↑)
- Propranolol (PRO): ADRB2 antagonist (cAMP ↓)
- Forskolin (FSK): activator of adenylate cyclase (cAMP ↑)

- NanoBiT signal shows good correlation with cAMP biosensor signal
- SmBiT-CA:LgBiT-R2A interaction is reversible
Further Struggles for Split Fluc at 37 °C

Goal: compare the reversibility and temperature sensitivity of NanoBiT and split Fluc using the PKA model system.

- Optimal configuration identified for both
- ≥ 10 amino acid Gly/Ser linkers for both
- Transfection of varying amounts of DNA (results shown for optimized conditions for both systems)

Braedy Butler
NanoBiT™ Compared to NanoBRET™

Goal: compare response dynamics of NanoBiT & NanoBRET using PKA model system
- BRET relies on energy transfer, not subunit interaction
- Transient expression in HEK293, expressing endogenous β2-adrenergic receptor (ADRB2)
- NanoBiT signal closely approximates NanoBRET
NanoBiT™ Applied to AR Dimerization

Goal: determine if NanoBiT can be used to monitor Androgen Receptor dimerization in living cells

- **R1881:** androgen used to induce Androgen Receptor dimerization

Adapted from Int. J. Mol. Sci. 2013; 14(6):12496-12519
NanoBiT™ Applied to CRAF:BRAF

Goal: determine if NanoBiT can be used to monitor RAF dimerization in response to treatment with BRAF inhibitors

BRAF^{V600E} Cells

- In cells expressing BRAF^{V600E}, inhibitors block MEK/ERK activation

BRAF^{WT} Cells

- In cells expressing BRAF^{WT}, inhibitors activate MEK/ERK

Adapted from Biochemical Society Transactions 2011; 39:472-476

- EC50 values & rank order potency consistent with literature
- NanoBiT can be used to monitor dimerization of full-length RAF proteins

Marie Schwinn
NanoBiT™ Applied to p53:MDM2

Goal: demonstrate that NanoBiT can be used to monitor PPI inhibition using a direct inhibitor

![Diagram showing interactions between MDM2, p53, and Nutlin-3](image)

- Screened all eight possible combinations
- >100 fold S/B with saturating [nutlin-3]
- Robust detection of nutlin-3 inhibition in both 96- and 384-well formats

-Marie Schwinn
NanoBiT™ Scaled to Higher Density Formats

NanoBiT in drug discovery
- NanoBiT can be scaled to 384- and 1536-well formats
- Screen for PPI modulators in a cellular context

AVPR2:ARRB2 in 1536-well format
- 2 μL AVP or vehicle/well
- 8 uL cell suspension (3,000 cells/well) + Nano-Glo Live Cell Reagent
- Measure RLU after 15 minutes
- Z’ = 0.52
NanoBiT™ Imaging From Single Cells

Goal: determine if bioluminescence imaging (BLI) can be used to monitor GPCR:ARRB2 interactions from isolated cells

- Hela cells expressing optimal orientations for AVPR2:ARRB2 and ADRB2:ARRB2 were treated with 1 µM AVP or 100 µM ISO at t = 0, respectively
- Images acquired every 2-4 sec using an Olympus LV200 microscope (EM gain = 400-600)
NanoBiT™ Using Single Copy Integration

- Single copy integration of a bi-directional CMV promoter expressing BRAF-LgBiT & CRAF-SmBiT
- Treatment with GDC0879 to induce CRAF:BRAF dimerization
- NanoBiT should be favored over related approaches with less sensitivity for genome editing

Mike Slater & Jim Hartnett
NanoBiT™ Entry & Control Vectors

Cloning vectors
- Four entry vectors for standard PCR cloning (using MCS)
- Four entry vectors compatible with the Flexi Vector System
 - Facilitate cloning using >9,000 validated ORFs from the Kazusa DNA Research Institute
- All vectors utilize the HSV-TK promoter to minimize non-specific association of LgBiT:SmBiT
 - When needed, expression vectors with stronger promoters will be available via Custom Research Materials

Positive control constructs:
- FKBP:FRB for inducible interaction via addition of rapamycin
- PRKACA:PRKAR2A providing a bright, constitutive interaction in many cell types
 - Interaction can also be modulated by adding modulators of intracellular cAMP

NanoBiT Negative Control Vector
- Encodes HaloTag®-SmBiT
- Diffuse expression throughout the cell
- Accumulates to high levels
Nano-Glo® Live Cell Assay System

Nano-Glo Live Cell Substrate:
Furimazine + proprietary agent for autoluminescence reduction

Nano-Glo LCS Dilution Buffer:
Aqueous dilution buffer providing enhanced furimazine stability

20X dilution

Nano-Glo Live Cell Reagent
(5X aqueous stock for delivery to cells)

Increased dynamic range by decreasing autoluminescence background

log [Compound] (M)

Luminescence (RLU)

Decreased autoluminescence background
NanoBiT™ Summary

Key characteristics:
• **Very small**, minimizing steric bulk
• **Very bright**, maximizing sensitivity and allowing endogenous levels of expression
• **Reversible**, monitor protein association and dissociation
• **Minimal perturbation**, results with several PPIs indicate minimal influence on equilibrium binding or rates of association/dissociation

Key applications:
• **Real-time measurements** of protein interaction dynamics
• **Drug discovery** in 384- or 1536-well formats
• **Bioluminescence imaging** on isolated cells
• **In vivo imaging** of protein:protein interactions (pending)
• **Mapping** protein:protein interaction networks (pending)
Acknowledgements

Advanced Technology Group
Andrew Dixon
Marie Schwinn
Mary Hall
Kris Zimmerman
Paul Otto
Thomas Lubben
Lance Encell
Thomas Machleidt
Thomas Kirkland
Monika Wood
Keith Wood

Integrated Biology
Braeden Butler
Chris Eggers
Jim Hartnett
Michael Slater
Mei Cong
Frank Fan

Commercialization Team
Amy Landreman
Mary Upshaw
Ryan Boley
Brian McNamara
Steve Letellier
Joel Walker

Cellular Analysis Business Unit
Gediminas Vidugiris

R&D Leadership
Gary Tarpley
Martin Rosenberg

Promega Corporation
Thank You!
Questions?