TECHNICAL BULLETIN

$pTnT^{TM}$ Vector

Instructions for Use of Product **L5610**

Revised 8/14 TB304

pTNTTM Vector

	All technical literature is available at: www.promega.com/protocols/ Visit the web site to verify that you are using the most current version of this Technical Bulletin. E-mail Promega Technical Services if you have questions on use of this system: techserv@promega.com	
1.	Description	.1
2.	Product Components and Storage Conditions	.1
3.	Features of the pTNT TM Vector	.2
	pTNT™ Vector Multiple Cloning Site and Circle Map	
5.	pTNT™ Vector Restriction Sites and Sequence Accession Number	. 5
6.	References	.7
7.	Summary of Changes	.7

1. Description

The pTNTTM Vector is designed for the convenient expression of cloned genes using in vitro expression systems. Both the SP6 and the T7 polymerase promoters lie in tandem adjacent to the multiple cloning site, allowing for the highly efficient synthesis of RNA in vitro from either promoter. Protein can be expressed in vitro from a gene cloned into the pTNTTM Vector using an SP6- or T7-based, in vitro coupled transcription/translation system. The pTNTTM Vector contains a 5' β -globin leader sequence and a synthetic poly(A)₃₀ tail, which have both been reported to enhance expression of certain genes (1–3). The vector also contains a T7 terminator site (4).

2. Product Components and Storage Conditions

PRODUCT	SIZE	CAT.#
pTNT™ Vector	20µg	L5610

Storage Conditions: Store at -70°C to -20°C.

3. Features of the pTNT[™] Vector

Tandem SP6 and T7 Promoters

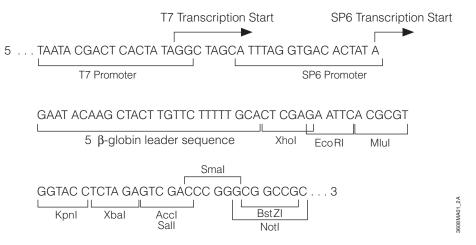
Both the SP6 and T7 promoters are located immediately upstream of the multiple cloning region. The presence of both of these promoters allows the convenient use of either an SP6- or T7-based in vitro coupled transcription/translation system.

Multiple Cloning Region

The multiple cloning region is immediately downstream from the T7 and SP6 promoters. The sites in the multiple cloning region are compatible with subcloning cDNAs that have been prepared with the Universal RiboClone[®] cDNA Synthesis System (Cat.# C4360).

5' Leader Sequence of β **-Globin**

Several factors have been identified that lead to efficient translation in vitro and in vivo. Among these are a cap site, an untranslated region, and a consensus sequence surrounding the AUG start site. As an approach to generating highly efficient mRNA for translation of foreign genes, hybrid RNAs have been synthesized in which the cognate leader is replaced with one derived from a highly efficient viral or eukaryotic mRNA (1). The 5' UTR of β -globin has been reported to increase the translation of several genes for more rapid initiation of translation (1,2).


Poly(A) Tail

A synthetic poly(A) tail of 30 residues has been added downstream of the multiple cloning site. The presence of a poly(A) tail at the 3′ end of an RNA transcript has been referenced for enhanced translation of RNAs containing a consensus Kozak sequence or for transcripts containing only an initial start codon (3,5).

f1 Origin of Replication

For generation of single-stranded DNA (ssDNA) from the f1 origin, bacteria transformed with the pTNT[™] Vector carrying the DNA insert of interest are infected with an appropriate helper phage. The plasmid then enters the f1 replication mode, and the resulting ssDNA is exported from the cell as an encapsidated virus particle. The ssDNA molecule exported has the sequence of the strand shown for the multiple cloning region (Figure 1).

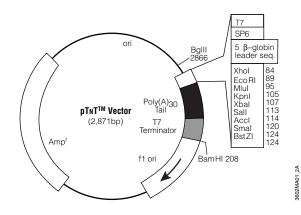

4. pTNTTM Vector Multiple Cloning Site and Circle Map

Figure 1. pTN**T[™] Vector multiple cloning site.** The sequence shown corresponds to RNA synthesized by the T7 or SP6 RNA polymerases. The strand shown is the same as the ssDNA strand produced by this vector.

4. **pTNTTM Vector Multiple Cloning Site and Circle Map (continued)**

Figure 2. pTNT[™] Vector circle map and sequence reference points.

T7 RNA polymerase promoter	16-34
SP6 RNA polymerase promoter	40-56
5′ β -globin leader sequence	57-83
Multiple cloning region	84-130
Synthetic poly(A) ₃₀ region	131-160
T7 transcription terminator sequence	161-208
Phage f1 region	287-742
β -Lactamase (Amp ^r) coding region	1179-2039
β -Lactamase (Amp ^r) coding region	1179-2039

Note: Use the T7 EEV Promoter Primer (Cat.# Q6700) to sequence the pTNTTM Vector. Do not use the T7 Promoter Primer (Cat.# Q5021) to sequence this vector as there is a sequence difference between the T7 Promoter Primer and the T7 promoter sequence in the pTNTTM Vector.

5. pTNTTM Vector Restriction Sites and Sequence Accession Number

The following restriction enzyme tables were constructed using DNASTAR[®] sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3′-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. The pTNT[™] Vector sequence is available at: **www.promega.com/vectors/** and in the GenBank[®] database (GenBank[®]/EMBL Accession Number **AF479322**).

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AatII	1	1047	EclHKI	1	1966
AccI	1	114	Eco52I	1	124
Acc65I	1	101	EcoRI	1	89
AcyI	2	1044, 1426	FokI	4	884, 1527, 1814, 1995
AflIII	1	95	FspI	2	266, 1743
Alw26I	4	929, 971, 1124, 1900	HaeII	3	362, 370, 2614
Alw44I	3	797, 1294, 2540	HgaI	5	295, 876, 1434, 2164, 2742
AlwNI	1	2445	HincII	1	115
AspHI	4	801, 1298, 1383, 2544	HindII	1	115
AvaI	2	84, 118	Hsp92I	2	1044, 1426
AvaII	2	1602, 1824	KpnI	1	105
BamHI	1	208	MluI	1	95
BanI	3	101, 476, 2013	MspAI	4	864, 1330, 2271, 2516
BanII	1	446	NaeI	1	414
BglI	2	276, 1848	NdeI	1	792
BglII	1	2866	NgoMIV	1	412
BsaI	1	1900	NheI	1	34
BsaOI	5	127, 247, 1448, 1597, 2520	NotI	1	124
BsaAI	1	517	NspI	1	941
BsaHI	2	1044, 1426	PaeR7I	1	84
BsaJI	3	118, 172, 2694	PspAI	1	118
Bsp1286I	5	446, 801, 1298, 1383, 2544	PvuI	2	247, 1597
BspHI	3	1021, 1126, 2134	RsaI	4	12, 103, 809, 1485
BssSI	3	990, 1297, 2681	SalI	1	113
BstOI	1	2695, 2708, 2829	ScaI	2	12, 1485
BstZI	1	124	SinI	2	1602, 1824
Cfr10I	2	412, 1881	SmaI	1	120
DraI	3	1388, 2080, 2099	SspI	2	725, 1161
DraII	2	177, 986	StyI	1	172
DraIII	1	520	VspI	1	1791
DrdI	3	564, 883, 2752	XbaI	1	107
EaeI	2	124, 1573	XhoI	1	84
EagI	1	124	XmaI	1	118
EarI	2	225, 116	XmnI	1	1366

Table 1. Restriction Enzymes That Cut the pTNT[™] Vector 1−5 Times

Note: The enzymes listed in boldface type are available from Promega.

O Promega

5. pTNTTM Vector Restriction Sites and Sequence Accession Number (continued)

AccB7I	BbuI	Bst1107I	Eco81I	NcoI	Psp5II	SphI
AccIII	BclI	Bst98I	EcoICRI	NruI	PstI	SplI
AflII	BlpI	BstEII	EcoNI	NsiI	PvuII	SrfI
AgeI	Bpu1102I	BstXI	EcoRV	PacI	RsrII	Sse8387I
ApaI	BsaBI	Bsu36I	EheI	PflMI	SacI	StuI
AscI	BsaMI	ClaI	FseI	PinAI	SacII	SwaI
AvrII	BsmI	CspI	HindIII	PmeI	SfiI	TfiI
BalI	Bsp120I	Csp45I	HpaI	PmlI	SgfI	Tth111I
BbeI	BspMI	DsaI	I-PpoI	Ppu10I	SgrAI	XcmI
BbrPI	BsrGI	Eco47III	KasI	PpuMI	SnaBI	
BbsI	BssHII	Eco72I	NarI	PshAI	SpeI	

Table 2. Restriction Enzymes that Do Not Cut the pTNT[™] Vector.

Table 3. Restriction Enzymes that Cut the pTNT[™] Vector 6 or More Times.

AciI	DdeI	HphI	MseI	Sau96I
AluI	DpnI	Hsp92I	MspI	ScrFI
BbvI	DpnII	MaeI	NciI	SfaNI
BsrI	Fnu4HI	MaeII	NdeII	TaqI
BsrSI	HaeIII	MaeIII	NlaIII	Tru9I
Bst71I	HhaI	MboI	NlaIV	XhoII
BstUI	HinfI	MboII	PleI	
CfoI	HpaII	MnlI	Sau3AI	

Note. The enzymes listed in boldface type are available from Promega.

6. References

- 1. Falcone, D. and Andrews, D.W. (1991) Both the 5' untranslated region and the sequences surrounding the start site contribute to efficient initiation of translation in vitro. *Mol. Cell. Biol.* **11**, 2656–64.
- 2. Annweiler, A., Hipskind, R.A. and Wirth, T. (1991) A strategy for efficient in vitro translation of cDNAs using the rabbit beta-globin leader sequence. *Nucl. Acids Res.* **19**, 3750.
- 3. Wakiyama, M., Futami, T. and Miura, K. (1997) Poly(A) dependent translation in rabbit reticulocyte lysate. *Biochimie* **79**, 781–785.
- 4. Sengupta, D., Chakravarti, D. and Maitra, U. (1989) Relative efficiency of utilization of promoter and termination sites by bacteriophage T3 RNA polymerase. *J. Biol. Chem.* **264**, 14246–55.
- 5. Betz, N. (2000) Characterization of TNT® T7 Quick for PCR DNA. Promega Notes 77, 19–22.

7. Summary of Changes

The following change was made in the 8/14 revision of this document:

Patent and licensing information was updated.

© 2002–2013 Promega Corporation. All Rights Reserved.

RiboClone and TNT are registered trademarks of Promega Corporation. pTNT is a trademark of Promega Corporation.

DNASTAR is a registered trademark of DNASTAR, Inc. GenBank is a registered trademark of the U.S. Department of Health and Human Services.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.