$pCMVTnT^{\scriptscriptstyle TM}\ Vector$

Instructions for Use of Product **L5620**

Revised 9/14 TB305

pCMVTnT[™] Vector

All technical literature is available at: www.promega.com/protocols/ Visit the web site to verify that you are using the most current version of this Technical Bulletin. E-mail Promega Technical Services if you have questions on use of this system: techserv@promega.com

1.	Description	. 1
	Product Components and Storage Conditions	
	Features of the pCMVTnT TM Vector.	
	-	
	pCMVTNT™ Vector Multiple Cloning Site and Circle Map	
	pCMVTNT™ Vector Restriction Sites and Sequence Accession Number	
	References	
7.	Summary of Changes	. 7

1. Description

The pCMVTnTTM Vector is designed for the convenient expression of cloned genes using in vivo or in vitro expression systems. Both the SP6 and the T7 polymerase promoters lie in tandem adjacent to the multiple cloning site, allowing for highly efficient synthesis of RNA in vitro from either promoter. Protein can be expressed in vitro from a gene cloned into the pCMVTnTTM Vector using an SP6- or T7-based, coupled in vitro transcription/translation system. The pCMVTnTTM Vector contains a 5´ β -globin leader sequence reported to enhance expression of certain genes in vitro (1,2). For in vivo expression, the vector contains a cytomegalovirus (CMV) enhancer/promoter region that can allow strong constitutive expression in many cell types (3). A β -globin/IgG chimeric intron and a late SV40 polyadenylation site are located downstream of the enhancer/promoter region (4,5).

2. Product Components and Storage Conditions

PRODUCT	SIZE	CA1.#
pCMVTNT™ Vector	20ug	L5620

Storage Conditions: Store at -70° C to -20° C.

3. Features of the pCMVTNTTM Vector

Enhancer/Promoter Regions

The CMV enhancer/promoter region present in the pCMVTNT™ Vector allows strong, constitutive expression in many cell types. The promiscuous nature of the CMV enhancer/promoter has been demonstrated in transgenic mice, where expression of the chloramphenical acetyltransferase (CAT) gene under the regulation of the CMV enhancer/promoter was observed in 24 of 28 tissues examined (3).

Chimeric Intron

Downstream of the enhancer/promoter region is a chimeric intron composed of the 5'-donor site from the first intron of the human β -globin gene and the branch and 3'-acceptor site from the intron that is between the leader and the body of an immunoglobulin gene heavy chain variable region (6). The sequences of the donor and acceptor sites, along with the branchpoint site, have been changed to match the consensus sequences for splicing (7). Transfection studies have demonstrated that the presence of an intron flanking the cDNA insert frequently increases the level of gene expression (8.11).

Tandem SP6 and T7 Promoters

Both SP6 and T7 promoters are located downstream of the intron (i.e., immediately upstream of the multiple cloning region). The presence of both of these promoters allows the convenient use of either an SP6- or T7-based in vitro coupled transcription/translation system.

Multiple Cloning Region

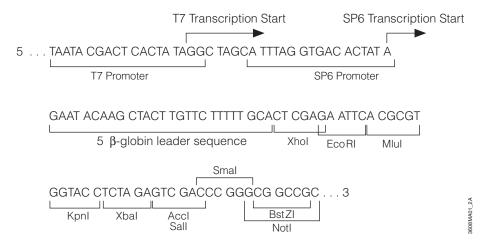
The multiple cloning region is immediately downstream from the T7 and SP6 promoters and the β -globin leader sequence. The sites in the multiple cloning region are compatible with subcloning cDNA prepared with the Universal RiboClone® cDNA Synthesis System (Cat.# C4360).

SV40 Late Polyadenylation Signal

Polyadenylation signals cause the termination of transcription by RNA polymerase II and signal the addition of approximately 200–250 adenosine residues to the 3´-end of the RNA transcript (12). Polyadenylation enhances RNA stability and translation (13,14). The late SV40 polyadenylation signal is extremely efficient and increases the steady-state level of RNA approximately fivefold more than the early SV40 polyadenylation signal (15).

5' Leader Sequence of β-Globin

2


Several factors have been identified that lead to efficient translation in vitro and in vivo. Among these are a cap site, an untranslated region, and a consensus sequence surrounding the AUG start site. As an approach to generating highly efficient mRNA for translation of foreign genes, hybrid RNAs have been synthesized in which the cognate leader is replaced with one derived from a highly efficient viral or eukaryotic mRNA (1). The 5^{\prime} UTR of β -globin has been reported to increase the translation of several genes for more rapid initiation of translation (1,2).

f1 Origin of Replication

For generation of single-stranded DNA (ssDNA) from the f1 origin, bacteria transformed with the pCMVTNTTM Vector carrying the DNA insert of interest are infected with an appropriate helper phage. The plasmid then enters the f1 replication mode, and the resulting ssDNA is exported from the cell as an encapsidated virus particle. The ssDNA molecule exported has the sequence of the strand shown for the multiple cloning region (Figure 1).

4. pCMVTNT™ Vector Multiple Cloning Site and Circle Map

Figure 1. pCMVTN**T**[™] **Vector multiple cloning site.** The sequence shown corresponds to RNA synthesized by the T7 or SP6 RNA polymerases. The strand shown is the same as the ssDNA strand produced by this vector.

4. pCMVTNT™ Vector Multiple Cloning Site and Circle Map (continued)

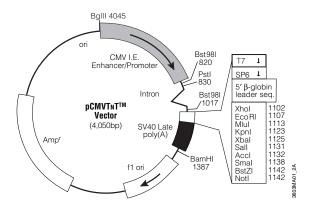


Figure 2. pCMVTNTTM Vector circle map and sequence reference points.

Cytomegalovirus immediate-early enhancer/promoter region	1-795
Chimeric intron	857-989
T7 RNA polymerase promoter	1034-1052
SP6 RNA polymerase promoter	1058-1074
5´ β -globin leader sequence	1075-1101
Multiple cloning region	1102-1148
SV40 late polyadenylation signal	1155-1376
Phage f1 region	1466-1921
β-Lactamase (Amp ^r) coding region	2358-3218

Note: Use the T7 EEV Promoter Primer (Cat.# Q6700) to sequence the pCMVTNT[™] Vector. Do not use the T7 Promoter Primer (Cat.# Q5021) to sequence this vector as there is a sequence difference between the T7 Promoter Primer and the T7 promoter sequence in the pCMVTNT[™] Vector.

5. pCMVTNT™ Vector Restriction Sites and Sequence Accession Number

The following restriction enzyme tables were constructed using DNASTAR® sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3′-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. The pCMVTNT™ Vector sequence is available at: www.promega.com/vectors/ and in the GenBank® database (GenBank®/EMBL Accession Number AF477200).

Table 1. Restriction Enzymes That Cut the pCMVTNT™ Vector 1-5 Times

Enzyme	# of Sites	s Location	Enzyme	# of Sites	Location
AatII	5	278, 331, 414, 600, 2226	EarI	2	1404, 2346
AccI	1	1132	EclHKI	1	3145
Acc65I	1	1119	Eco52I	1	1142
AflII	2	820, 1017	EcoICRI	1	719
AflIII	1	1113	EcoRI	1	1107
Alw44I	3	1976, 2473, 3719	FokI	5	950, 2063, 2706, 2993, 3174
AlwNI	1	3624	FspI	2	1445, 2922
AspHI	5	721, 1980, 2477, 2562, 3723	HaeII	3	1541, 1549, 3793
AvaI	2	1102, 1136	HincII	3	669, 1133, 1285
AvaII	2	2781, 3003	HindII	3	669, 1133, 1285
BalI	2	10, 64	HindIII	1	748
BamHI	1	1387	HpaI	1	1285
BanI	5	618, 943, 1119, 1655, 3192	KpnI	1	1123
BanII	2	721, 1625	MluI	1	1113
BbsI	1	928	MspAI	4	2043, 2509, 3450, 3695
			NaeI	1	1593
BglI	1	4045	NcoI	1	513
BsaI	2	882, 3079	NdeI	2	387, 1971
BsaOI	5	1145, 1426, 2627, 2776, 3699	NgoMIV	1	1591
BsaAI	2	493, 1696	NheI	1	1052
BsaBI	1	1386	NotI	1	1142
BsaJI	3	513, 1136, 3873	NspI	1	2120
BsaMI	2	1206, 1299	PaeR7I	1	1102
BsmI	2	1206, 1299	PspAI	1	1136
BspHI	3	2200, 2305, 3313	PstI	1	830
BspMI	1	844	PvuI	2	1426, 2776
BsrGI	1	96	SacI	1	721
BssSI	3	2169, 2476, 3860	SalI	1	1131
Bst98I	2	820, 1017	ScaI	2	1030, 2664
BstOI	5	243, 436, 3874, 3887, 4008	SinI	2	2781, 3003
BstZI	1	1142	SmaI	1	1138
Cfr10I	2	1591, 3060	SnaBI	1	493
ClaI	1	1380	SpeI	1	152
DraI	4	1346, 2567, 3259, 3278	SspI	4	5, 52, 1904, 2340
DraII	1	2165	StyI	1	513
DraIII	1	1699	VspI	2	160, 2970
DrdI	4	809, 1743, 2062, 3931	XbaI	1	1125
DsaI	1	513	XhoI	1	1102
EaeI	4	8, 62, 1142, 2752	XmaI	1	1136
EagI	1	1142	XmnI	1	2545

Note: The enzymes listed in boldface type are available from Promega.

5. pCMVTNT™ Vector Restriction Sites and Sequence Accession Number (continued)

Table 2. Restriction Enzymes that Do Not Cut the pCMVTNT™ Vector.

AccB7I	BbuI	BstXI	EcoRV	PacI	Psp5II	SplI
AccIII	BclI	Bsu36I	EheI	PflMI	PvuII	SrfI
AgeI	BlpI	CspI	FseI	PinAI	RsrII	Sse8387I
ApaI	Bpu1102I	Csp45I	I-PpoI	PmeI	SacII	StuI
AscI	Bsp120I	Eco47III	KasI	PmlI	SfiI	SwaI
AvrII	BssHII	Eco72I	NarI	Ppu10I	SgfI	TfiI
BbeI	Bst1107I	Eco81I	NruI	PpuMI	SgrAI	Tth111I
BbrPI	BstEII	EcoNI	NsiI	PshAI	SphI	XcmI

Table 3. Restriction Enzymes that Cut the pCMVTnT™ Vector 6 or More Times.

AciI	BsrI	Fnu4HI	Hsp92 II	MspI	Sau96I
AcyI	BsrSI	HaeIII	MaeI	NciI	ScrFI
AluI	Bst71I	HgaI	MaeII	NdeII	SfaNI
Alw26I	BstUI	HhaI	MaeIII	NlaIII	TaqI
BbvI	CfoI	HinfI	MboI	NlaIV	Tru9I
BglI	DdeI	HpaII	MboII	PleI	XhoII
BsaHI	DpnI	HphI	MnlI	Rsa I	
Bsp1286I	DpnII	Hsp92I	MseI	Sau3AI	

Note. The enzymes listed in boldface type are available from Promega.

6. References

6

- 1. Falcone, D. and Andrews, D.W. (1991) Both the 5' untranslated region and the sequences surrounding the start site contribute to efficient initiation of translation in vitro. *Mol. Cell. Biol.* **11**, 2656–64.
- 2. Annweiler, A., Hipskind, R.A. and Wirth, T. (1991) A strategy for efficient in vitro translation of cDNAs using the rabbit beta-globin leader sequence. *Nucl. Acids Res.* **19**, 3750.
- 3. Schmidt, E.V. *et al.* (1990) The cytomegalovirus enhancer: A pan-active controlelement in transgenic mice. *Mol. Cell. Biol.* **10**, 4406–11.
- 4. Brinster, R.L. *et al.* (1988) Introns increase transcriptional efficiency in transgenic mice. *Proc. Natl. Acad. Sci. USA* **85**, 836–40.
- 5. Carswell, S. and Alwine, J.C. (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site: Effects of upstream sequences. *Mol. Cell. Biol.* 9, 4248–58.
- 6. Bothwell, A.L. *et al.* (1981) Heavy chain variable region contribution to the NPb family of antibodies: Somatic mutation evident in a gamma 2a variable region. *Cell* **24**, 625–37.

- 7. Senapathy, P., Shapiro, M.B. and Harris, N.L. (1990) Splice junctions, branch point sites, and exons: Sequence statistics, identification, and applications to genome project. *Methods Enzymol.* **183**, 252–78.
- 8. Gross, M.K., Kainz, M.S. and Merrill, G.F. (1987) Introns are inconsequential to efficient formation of cellular thymidine kinase mRNA in mouse L cells. *Mol. Cell. Biol.* 7, 4576–81.
- 9. Buchman, A.R. and Berg, P. (1988) Comparison of intron-dependent and intronindependent gene expression. *Mol. Cell. Biol.* **8**, 4395–405.
- 10. Evans, M.J. and Scarpulla, R.C. (1989) Introns in the 3′-untranslated region can inhibit chimeric CAT and beta-galactosidase gene expression. *Gene* 84, 135–42.
- 11. Huang, M.T. and Gorman, C.M. (1990) Intervening sequences increase efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. *Nucl. Acids Res.* 18, 937–47.
- 12. Proudfoot, N. (1991) Poly(A) signals. Cell 64, 671-4.
- 13. Bernstein, P. and Ross, J. (1989) Poly(A), poly(A) binding protein and the regulation of mRNA stability. *Trends Biochem. Sci.* 14, 373–7.
- 14. Jackson, R.J. and Standart, N. (1990) Do the poly(A) tail and 3′ untranslated region control mRNA translation? *Cell* **62**, 15–24.
- 15. Carswell, S. and Alwine, J.C. (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site: Effects of upstream sequences. *Mol. Cell. Biol.* 9, 4248–58.

7. Summary of Changes

The following change was made in the 9/14 revision of this document:

Patent and licensing information was updated.

 $\hbox{@ 2002-2014 Promega Corporation.}$ All Rights Reserved.

 $RiboClone\ is\ a\ registered\ trademark\ of\ Promega\ Corporation.\ pCMVTNT\ is\ a\ trademark\ of\ Promega\ Corporation.$

DNASTAR is a registered trademark of DNASTAR, Inc. GenBank is a registered trademark of the U.S. Department of Health and Human Services.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.